產(chǎn)品分類品牌分類
-
激光測振儀 傳感器多功能綜合測試系統(tǒng) 先進功能材料電測綜合測試系統(tǒng) 長期耐腐蝕老化試驗平臺- 高電場介電、損耗、漏電流測試系統(tǒng) 阻抗分析儀 鐵電綜合材料測試系統(tǒng) 鐵電分析儀 高壓功率放大器 D33壓電系數(shù)測試儀 高溫介電溫譜測試儀 熱釋電測試儀 TSDC熱刺激電流測試儀 高壓極化裝置 高低溫冷熱臺 簡易探針臺 高溫四探針測試儀 多通道電流采集系統(tǒng) 高真空退火爐 電學(xué)綜合測試系統(tǒng) 高溫管式爐測試儀 漆包線擊穿耐壓試驗儀 電化學(xué)遷移測試系統(tǒng) 水平垂直燃燒測定機 陶瓷材料閃燒試驗裝置 導(dǎo)通電評估系統(tǒng) 差熱分析儀 醫(yī)用接地電阻
鐵電材料中的大電卡效應(yīng)的應(yīng)用前景
制冷是人們?nèi)粘I钪?的事情, 從水果、蔬菜、肉類保鮮, 到空調(diào)的使用, 再到醫(yī)用方面的核磁共振成像等, 都需要制冷。普通的壓縮機制冷的方法已經(jīng)差不多到了其極限, 并且其排出的有機氣體, 直接破壞嗅氧層, 引起了溫室效應(yīng), 對環(huán)境的破壞作用已越來越受到人們的重視。尋找制冷方式成為一項刻不容緩的任務(wù)。
電卡效應(yīng)(Electrocaloric Effect)是在極性材料中因外電場的改變從而導(dǎo)*化狀態(tài)發(fā)生改變而產(chǎn)生的絕熱溫度或等溫熵的變化。由于電卡效應(yīng)直接與極化強度的變化相關(guān), 因而強極性的鐵電材料能產(chǎn)生較大的電卡效應(yīng)。對極性材料施加電場, 材料中的電偶極子從無序變?yōu)橛行?/span>, 材料的熵減小, 在絕熱條件下, 多余的熵產(chǎn)生溫度的上升。移去電場, 材料中的電偶極子從有序變?yōu)闊o序, 材料的熵增加, 在等溫條件下, 材料從外界吸收熱量使能量守恒。或在絕熱條件下, 不足的熵導(dǎo)致材料溫度的下降。這就是電卡效應(yīng)的制冷原理。
對于一個理想的制冷循環(huán), 電場移去時電卡材料能從接觸的負(fù)載吸收熱量(等溫熵變)。然后電卡材料與負(fù)載分開, 此時, 若對電卡材料施加電場, 材料的溫度將會升高(絕熱溫變)。將電卡材料與散熱片接觸, 多余的熱量將要釋放出去, 使得電卡材料的溫度與室溫一致。然后, 電卡材料與散熱片斷開, 并與負(fù)載相接觸。移去電場, 電卡材料的溫度降低, 并從負(fù)載處吸收熱量。重復(fù)整個過程, 負(fù)載的溫度會不斷降低。這就是電卡制冷機的基本原理。由于在熱循環(huán)過程中, 電卡材料的熵變和溫變都起到了作用, 兩者對熱循環(huán)都是非常重要的。
電卡效應(yīng)的研究可以追蹤到上個世紀(jì) 30 年代, 兩位德國科學(xué)家 Kobeko 及 Kurtschatov 首先測量了羅息鹽的電卡效應(yīng), 得到了定性結(jié)果, 但沒有數(shù)據(jù)報道。 1963 年, 兩位美國科學(xué)家重復(fù)了他們的實驗, 并在 22.2 ℃, 1.4 kV/cm 的條件下, 測得絕熱溫度變化為 0.0036 ℃。由于鐵電體等極性材料的限制, 電卡效應(yīng)的研究得到的絕熱溫度的變化都小于 1 ℃。這主要是由于體材料的擊穿電場較低, 材料的選擇范圍也相對較窄。
與此同時, 磁卡效應(yīng)的研究取得了一系列成果, 獲得了數(shù)種被稱為巨磁卡效應(yīng)的材料體系, 如Gd5(SixGe4-x)、Tb5Si2Ge2、MnAs1-xSbx、La(Fe1-xSix)13、La(Fe1-xSix)13Hy、MnFePxAs1-x及 Ni2±xMn1±xGa。這些材料的單位磁場的絕熱溫度變化達到 4 ℃/T(T-特斯拉)。相應(yīng)地, 磁卡制冷機也被研制出來。磁卡制冷與電卡制冷都是利用固態(tài)相變制冷, 在原理上沒有本質(zhì)的區(qū)別。磁卡效應(yīng)的優(yōu)點是磁場不必與樣品接觸, 并且可以非常強而不考慮擊穿的問題; 缺點是磁場的產(chǎn)生需要磁鐵, 這阻礙了制冷器件的小型化, 在設(shè)計上也很不靈活。電卡效應(yīng)電場的設(shè)計取決于高壓端的形狀, 在設(shè)計上非常靈活多樣。
電卡效應(yīng)研究的應(yīng)用前景。對電卡效應(yīng)重新燃起的熱潮源于發(fā)表在Science雜志的關(guān)于PZT和P(VDF-TrFE)薄膜的兩項工作。目前研究工作已經(jīng)涵蓋了無機鐵電反鐵電單晶、陶瓷、薄膜、厚膜、有機鐵電薄膜、厚膜以及鐵電液晶等, 數(shù)種材料表現(xiàn)出了誘人的應(yīng)用前景。鐵電聚合物的絕熱溫變和等溫熵變?nèi)匀桓哂谄渌牧?/span>; 馳豫型鐵電體中具有納米無序態(tài)及室溫平均相變溫度。鐵電多層陶瓷也表現(xiàn)出較高的電卡效應(yīng)的累積效應(yīng)。一級相變單晶 BaTiO3 具有非常高的電卡效率(ΔQ/ΔE, ΔT/ΔE)。關(guān)于鐵電制冷器件方面, 早期 Sinyavsky等用鐵電陶瓷進行了電卡制冷器件的嘗試, 得到了約 4 ℃的冷熱端溫差。近 Gu等采用輻照后的 P(VDF-TrFE)多層膜以及一種往復(fù)運動蓄熱的方式, 得到了約 6 ℃的冷熱端溫差, 表現(xiàn)出誘人的應(yīng)用前景。隨著眾多在多層結(jié)構(gòu)設(shè)計、熱流開關(guān)、新制冷材料的不斷開拓, 制備可實用化的制冷器件指日可待。