欧美国产日韩在线免费观看-欧美日韩成人激情一区二区-欧美久久综合一区二区-亚洲av寂寞少妇久久

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當(dāng)前位置:
美國布魯克海文儀器公司>技術(shù)文章>測量應(yīng)用案例-64-200SM

技術(shù)文章

測量應(yīng)用案例-64-200SM

閱讀:208          發(fā)布時間:2015-8-28
 文獻名: Directional supracolloidal self-assembly via dynamic covalent bonds and metal coordination
 
作者: Na Xu,  Jie Han,  Zhengguang Zhu,  Bo Song,  Xinhua Lu and    Yuanli Cai
The Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
 
摘要:An emerging strategy towards the sophistication of supramolecular nanomaterials is the use of supracolloidal self-assembly, in which micelles or colloids are used as building blocks. Binding directionality can produce nanostructures with attractive properties. Herein, we present a new directional supracolloidal self-assembly by virtue of dynamic covalent bonds and metal coordination in water. Conjugation of a ligand precursor to a water-soluble block copolymer through dynamic covalent bonds leads to the dehydration and micellization of the functionalized polymer. Reversible reaction facilitates the permeation of metal ions into core–shell interfaces. Conversely, metal-coordination promotes reaction over the interfaces. Cu(II)-coordination occurs overwhelmingly inside each isolated micelle. However, Zn(II)-coordination induced a directional self-assembly whose nanostructures evolve stepwise from nanorods, nanowires, necklaces, and finally to supracolloidal networks scaling-up to several tens of micrometres. Post-reactions of simultaneous dynamic covalent bond conversion and Zn(II)-coordination over the core–shell interfaces endow these supracolloidal networks with a huge specific surface area for hydrophobic dative metal centres accessible to substrates in water. Water-soluble shells play important roles in directional supracolloidal assembly and in the stabilization of nanostructures. Thus the directional self-assembly provides a versatile platform to produce metallo-hybridized nanomaterials that are promising as enzyme-inspired aqueous catalysts.
 

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言